Oncilla robot: a light-weight bio-inspired quadruped robot for fast locomotion in rough terrain
Related publications (113)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to simulate falling, swing, and torso b ...
This article presents a control algorithm framework with which a bipedal robot can perform a variety of gaits by only modifying a small set of control parameters. The controller drives a number of variables, called non-emergent variables, to their desired ...
This review explores a natural learning curve which gives an appropriate RoboCup Rescue challenge at the right age. Children who got involved in the age group 14+ should continue their learning experience until they reach graduate level. To reduce the cost ...
Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because ...
Over the last decade, active lower-limb prostheses demonstrated their ability to restore a physiological gait for transfemoral amputees by supplying the required positive energy balance during daily life locomotion activities. However, the added-value of s ...
We present a trajectory optimizer for quadrupedal robots with actuated wheels. By solving for angular, vertical, and planar components of the base and feet trajectories in a cascaded fashion and by introducing a novel linear formulation of the zeromoment p ...
Amphibious animals adapt their body coordination to compensate for changing substrate properties as they transition between terrestrial and aquatic environments. Using behavioural experiments and mathematical modelling of the amphibious centipede Scolopend ...
Background Gait training with partial body weight support (BWS) has become an established rehabilitation technique. Besides passive unloading mechanisms such as springs or counterweights, also active systems that allow rendering constant or modulated verti ...
Quadrupeds achieve rapid and highly adaptive locomotion owing to the coordination between their legs and other body parts such as their trunk, head, and tail, i.e. body-limb coordination. Therefore, a better understanding of the mechanism underlying body-l ...
We show dynamic locomotion strategies for wheeled quadrupedal robots that combine the advantages of both walking and driving. The developed optimization framework tightly integrates the additional degrees of freedom introduced by the wheels. Our approach r ...