Data-driven extraction of drive functions for legged locomotion: A study on Cheetah-cub robot
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The Basilisk Lizard’s striking ability to sustain highly dynamic legged locomotion on a range of surfaces from hard-ground to water is a remarkable feat [1]. Most legged robots would have difficulty emulating this animal’s ability to robustly locomote on y ...
Legged locomotion with spinal undulations is a topic that has not received much attention yet in robotics, though, vertebrates depend on both their limbs and spine to move efficiently in their environments. In this thesis, my aim is to get more insights in ...
This research is focusing on the implementation, testing, and analysis of quadrupedal, bio-inspired robot locomotion. Our tool of research is a light-weight, quadruped robot of the size of a house cat, both in simulation and hardware. We are currently foll ...
We present robot design and results from locomotion experiments with a novel, compliant quadruped robot: Cheetah-cub. The robot's leg configuration is based on a spring-loaded, panthograph-mechanism with multiple segments. A dedicated open-loop, joint-spac ...
Quadrupedal animals move through their environments with unmatched agility and grace. An important part of this is the ability to choose between different gaits in order to travel optimally at a certain speed or to robustly deal with unanticipated perturba ...
This paper presents a state estimation approach for legged robots based on stochastic filtering. The key idea is to extract information from the kinematic constraints given through the intermittent contacts with the ground and to fuse this information with ...
The use of free vibration in elastic structure can lead to energy efficient robot locomotion, since it significantly reduces the energy expenditure if properly designed and controlled. However, it is not well understood how to harness the dynamics of free ...
Behavioral performances of our legged robots are still far behind those of biological systems. Energy efficiency and locomotion velocity of our robots, for example, are orders of magnitude lower than those of animals, and in order to fill the gap, it requi ...
This paper addresses the problem of evaluating and estimating the mechanical robustness of footholds for legged robots in unstructured terrain. In contrast to approaches that rely on human expert knowledge or human defined criteria to identify appropriate ...
In this paper we present an approach to the problem of stabilizating the gaze of legged robots using Adaptive Frequency Oscillators to learn the frequency, phase and amplitude of the optical flow and generate compensatory commands during robot locomotion. ...