Spinal joint compliance and actuation in a simulated bounding quadruped robot
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quadruped animals achieve agile and highly adaptive locomotion owing to the coordination between their legs and other body parts, such as the trunk, head, and tail, that is, body-limb coordination. This study aims to understand the sensorimotor control und ...
Shape Memory Alloy (SMA) based actuators have become ideal candidates for use in compact and lightweight applications. These smart materials have often been referred to as artificial muscles due to their high work volume density. In this paper, a flexure-b ...
2021
, ,
In this paper, we present the design, control, and preliminary evaluation of the Symbitron exoskeleton, a lower limb modular exoskeleton developed for people with a spinal cord injury. The mechanical and electrical configuration and the controller can be p ...
Soft actuators using pressurized air are being widely used due to their inherent compliance, conformability and customizability. These actuators are powered and controlled by pneumatic supply systems (PSSs) consisting of components such as compressors, val ...
2020
One of the key challenges in soft robotics is the development of actuators which are truly soft and compliant, and can be adapted and tailored for different applications. In particular, the development of untethered soft actuators could enable robots to au ...
Institute of Electrical and Electronics Engineers Inc.2020
In this thesis our research goal is to develop, study and demonstrate multifunctional multi-robot systems in mesoscale. Particularly, our goal is to study and demonstrate terrestrial multi-locomotion and collective behaviours with mesoscale robots, similar ...
Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on th ...
Soft robots leverage deformable bodies to achieve different types of locomotion, improve transportability, and safely navigate cluttered environments. In this context, variable-stiffness structures provide soft robots with additional properties, such as th ...
We present a trajectory optimizer for quadrupedal robots with actuated wheels. By solving for angular, vertical, and planar components of the base and feet trajectories in a cascaded fashion and by introducing a novel linear formulation of the zeromoment p ...
2019
, , ,
Aquatic stepping gaits in animals arguably display higher speed performance as well as energetic efficiency compared to other gaits using the limbs (i.e walking). This suggest that the foot structure and function contributes at a great extent on the propul ...