On 2-Level Polytopes Arising In Combinatorial Settings
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the mixing time of the Dikin walk in a polytope a random walk based on the log-barrier from the interior point method literature. This walk, and a close variant, were studied by Narayanan (2016) and Kannan-Narayanan (2012). Bounds on its mixing ti ...
We prove a Hadwiger transversal-type result, characterizing convex position on a family of non-crossing convex bodies in the plane. This theorem suggests a definition for the order type of a family of convex bodies, generalizing the usual definition of ord ...
Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors v(1), ..., v(m) is an element of R-d and a constraint family B subset of 2([m]), find a set S. B that maximizes the squared volume of the sim ...
This paper features two main contributions. On the one hand, it gives an impressive survey on the progress on the diameter problem, including the breakthrough of the author with his disproof of the Hirsch conjecture among many other recent results. On the ...
The great Swiss mathematician Ludwig Schläfli (1814-1895) left after his death more than three hundred and fifty notebooks. They include mathematical studies and new results, as well as works about classical mathematical texts and a priori more surprising ...
A drawing of a graph in the plane is called a thrackle if every pair of edges meet precisely once, either at a common vertex or at a proper crossing. According to Conway's conjecture, every thrackle has at most as many edges as vertices. We prove this conj ...
To every d-dimensional polytope P with centrally symmetric facets one can assign a “subway map” such that every line of this “subway” contains exactly the facets parallel to one of the ridges of P. The belt diameter of P is the maximum number of subway lin ...
We define the crossing number for an embedding of a graph G into R^3, and prove a lower bound on it which almost implies the classical crossing lemma. We also give sharp bounds on the space crossing numbers of pseudo-random graphs. ...
2-level polytopes naturally appear in several areas of mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. We investigate upper bounds on the product of the number of facets and the number ...
It is shown that 2-dimensional subdivisions can be made regular by moving their vertices within parallel 1-dimensional spaces. As a consequence, any 2-dimensional subdivision is projected from the boundary complex of a 4-polytope. ...