**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Kan fibration

Summary

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan.
For each n ≥ 0, recall that the , , is the representable simplicial set
Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.
Horn of a simplex
For each k ≤ n, this has a subcomplex , the k-th horn inside , corresponding to the boundary of the n-simplex, with the k-th face removed. This may be formally defined in various ways, as for instance the union of the images of the n maps corresponding to all the other faces of . Horns of the form sitting inside look like the black V at the top of the adjacent image. If is a simplicial set, then maps
correspond to collections of -simplices satisfying a compatibility condition, one for each . Explicitly, this condition can be written as follows. Write the -simplices as a list and require that
for all with .
These conditions are satisfied for the -simplices of sitting inside .
A map of simplicial sets is a Kan fibration if, for any and , and for any maps and such that (where is the inclusion of in ), there exists a map such that and
Stated this way, the definition is very similar to that of fibrations in topology (see also homotopy lifting property), whence the name "fibration".
Using the correspondence between -simplices of a simplicial set and morphisms (a consequence of the Yoneda lemma), this definition can be written in terms of simplices. The image of the map can be thought of as a horn as described above. Asking that factors through corresponds to requiring that there is an -simplex in whose faces make up the horn from (together with one other face).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (2)

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous

MATH-497: Homotopy theory

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen

Related concepts (5)

Quasi-category

In mathematics, more specifically , a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a . The study of such generalizations is known as . Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic and some of the advanced notions and theorems have their analogues for quasi-categories.

Kan fibration

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For each n ≥ 0, recall that the , , is the representable simplicial set Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.

Model category

In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes ( theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic K-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results.

Related lectures (53)

The Nerve and Geometric RealizationMATH-436: Homotopical algebra

Delves into the computation and geometric realization of small categories, exploring the relationship between nerves and geometric structures.

Serre model structure on TopMATH-436: Homotopical algebra

Explores the Serre model structure on Top, focusing on right and left homotopy.

Quasi-Categories: Active Learning SessionMATH-436: Homotopical algebra

Covers fibrant objects, lift of horns, and the adjunction between quasi-categories and Kan complexes, as well as the generalization of categories and Kan complexes.