Group ringIn algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
Natural transformationIn , a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called .
Complete homogeneous symmetric polynomialIn mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. The complete homogeneous symmetric polynomial of degree k in n variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.
Monad (category theory)In , a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a in the of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.
Regular categoryIn , a regular category is a category with and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. A category C is called regular if it satisfies the following three properties: C is .
Flat morphismIn mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphism f from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e., is a flat map for all P in X. A map of rings is called flat if it is a homomorphism that makes B a flat A-module. A morphism of schemes is called faithfully flat if it is both surjective and flat. Two basic intuitions regarding flat morphisms are: flatness is a generic property; and the failure of flatness occurs on the jumping set of the morphism.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Retraction (topology)In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace. An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR.
Inclusion mapIn mathematics, if is a subset of then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element of to treated as an element of A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections.
Kan fibrationIn mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For each n ≥ 0, recall that the , , is the representable simplicial set Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.