Development of soft microscopic implants and acoustically-powered machines for biomedical applications
Related publications (61)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured en ...
Quadrupeds achieve rapid and highly adaptive locomotion owing to the coordination between their legs and other body parts such as their trunk, head, and tail, i.e. body-limb coordination. Therefore, a better understanding of the mechanism underlying body-l ...
Prokaryotes have the ability to walk on surfaces using type IV pili (TFP), a motility mechanism known as twitching(1,2). Molecular motors drive TFP extension and retraction, but whether and how these movements are coordinated is unknown(3). Here, we reveal ...
Animals display an enormous versatility and a remarkable ability to adapt to changes in environment and terrain. Research in bio-inspired robotics strives to transfer these skills to robots, including legged systems. Even though animals seemingly effortles ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Most current drones are designed with a static morphology aimed at exploiting a single locomotion mode. This results in limited versatility and adaptability to multi-domain environments, such as those encountered in rescue missions, agriculture and inspect ...
The study of animal locomotion is vast since animals have various shapes and modes of locomotion. It finds multiple applications especially in robotics. In this report, the focus will be put on snake locomotion. However snakes still have various techniques ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
A swarm of randomly moving miniature robots is an effective solution for the exploration of unknown terrains. However, the deployment of a swarm of miniature robots poses two challenges: finding an adequate locomotion strategy for fast exploration and obst ...