Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Gallium Nitride (GaN) is a wonder material which has widely transformed the world by enabling
energy-efficient white light-emitting diodes. Over the past decade, GaN has also emerged as one
of the most promising materials for developing power devices which ...
In this article, we propose an explicit and analytic charge-based model for estimating short-channel effects (SCEs) in GaN high-electron-mobility transistor (HEMT) devices. The proposed model is derived from the physical charge-based core of the ecole Poly ...
Gallium Nitride (GaN) is one of the most promising materials for high frequency power switching due to its exceptional properties such as large saturation velocity, high carrier mobility, and high breakdown field strength. The high switching frequency of G ...
Gallium Nitride (GaN) and all III-Nitride compounds have revolutionized the world with the development of the blue light emitting diode (LED). In addition, GaN-based epi-structures, such as AlGaN/GaN, enable the fabrication of high electron mobility transi ...
Over the past 20 years, III-nitrides (GaN, AlN, InN and their alloys) have proven to be an excellent material group for electronic devices, in particular, for high electron mobility transistors (HEMTs) operating at high frequency and high power. This is ma ...
High-electron-mobility transistors (HEMTs) based on 2-D electron gases (2DEGs) in III-V heterostructures have superior mobility compared with the transistors of silicon-based complementary metal-oxide-semiconductor technologies. The large mobility makes th ...
This paper presents a physics-based model for the threshold voltage in bulk MOSFETs valid from room down to cryogenic temperature (4.2 K). The proposed model is derived from Poisson’s equation including bandgap widening, intrinsic carrier-density scaling, ...
In this work, we present a new device concept for compact high-voltage sensing with high-impedance input port, consisting of an AlGaN/GaN high-electron-mobility channel controlled by trapped carriers generated by a metallic electrode. The high-voltage appl ...
In this article, an analytical predictive model of interface charge traps in symmetric, long-channel double-gate, junctionless transistors (JLTs) is proposed based on a charge-based model. Interface charge traps arising from exposure to chemicals, high-ene ...
This paper presents a device matching study of a commercial 40-nm bulk CMOS technology operated at cryogenic temperatures. Transistor pairs and linear arrays, optimized for device matching, were characterized over the temperature range from 300 K down to 4 ...