Addressing fairness in classification with a model-agnostic multi-objective algorithm
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standar ...
2020
,
In many transportation systems, a mismatch between the associated design and planning decisions and the demand is typically encountered. A tailored system is not only appealing to operators, which could have a better knowledge of their operational costs, b ...
PERGAMON-ELSEVIER SCIENCE LTD2021
Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most s ...
Strategic information is valuable either by remaining private (for instance if it is sensitive) or, on the other hand, by being used publicly to increase some utility. These two objectives are antagonistic and leaking this information by taking full advant ...
Developing classification algorithms that are fair with respect to sensitive attributes of the data is an important problem due to the increased deployment of classification algorithms in societal contexts. Several recent works have focused on studying cla ...
In this article, we address the numerical solution of the Dirichlet problem for the three-dimensional elliptic Monge-Ampere equation using a least-squares/relaxation approach. The relaxation algorithm allows the decoupling of the differential operators fro ...
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of non-pa ...
One of the main goal of Artificial Intelligence is to develop models capable of providing valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks to design such models by learning from examples coming from this same envi ...