Fab-to-fab and run-to-run variability in 130 nm and 65 nm CMOS technologies exposed to ultra-high TID
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Conventional device scaling has been the main guiding principle of the MOS device engineering over these past years. However, this aggressive scaling would be eventually limited due to the inability to remove the heat generated by MOSFET devices. The power ...
EPFL2019
The growth of information technology has been sustained by the miniaturization of Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FETs), with the number of devices per unit area constantly increasing, as exemplified by Mooreâs la ...
Promising results of state-of-the-art quantum computers fuel a world-wide effort in academic and private research laboratories to scale up the number of qubits and improve their characteristics in large arrays. To meet the scale-up challenge, innovative mi ...
Silicon transistor scaling is approaching its end and a transition to novel materials and device concepts is more than ever essential. High-mobility compound semiconductors are considered promising candidates to replace silicon, targeting low-power logic a ...
Boltzmann electron energy distribution poses a fundamental limit to lowering the energy dissipation of conventional MOS devices, a minimum increase of the gate voltage, i.e. 60 mV, is required for a 10-fold increase in drain-to-source current at 300 K. Neg ...
This paper presents a family of voltage references in standard 40-nm CMOS that exploits the temperature dependence of dynamic-threshold MOS, NMOS and PMOS transistors in weak inversion to enable operation over the ultra-wide temperature range from 4.2 K to ...
Cryogenic device models are essential for the reliable design of the cryo-CMOS interface that enables large-scale quantum computers. In this paper, mismatch characterization and modeling of a 40-nm bulk CMOS process over the 4.2-300 K temperature range is ...
IEEE2019
,
Transconductance efficiency (g(m)/I-D) is an essential design synthesis tool for low-power analog and RF applications. In this paper, the invariance of g(m)/I-D versus normalized drain current curve is analyzed in an asymmetric double-gate (DG) fully deple ...
2018
In this work, we analyze the effect of CF4/O-2 plasma treatment on the contact interface between the amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor and Titanium-Gold electrodes. First, the influence of CF4/O-2 plasma treatment is evaluated usin ...
This paper reports a compact ambipolar model for homojunction strained-silicon (sSi) nanowire (NW) tunnel FETs (TFETs) capable of accurately describing both I-V and G-V characteristics in all regimes of operation, n- and p-ambipolarity, the superlinear ons ...
Institute of Electrical and Electronics Engineers2017