Catégorie des modulesEn mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
Endomorphismevignette|Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme. En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.
Opération binaireLes opérations en codage binaire sont traitées à l'article Fonction logique. En mathématiques, une opération binaire est une opération à deux arguments ou opérandes. C'est le cas notamment des lois de composition interne sur un ensemble, telle que l'addition des entiers ou la composition de fonctions. Mais une opération partiellement définie comme la division ou la puissance peut également être considérée comme une opération binaire.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Morphisme d'anneauxUn morphisme d'anneaux est une application entre deux anneaux (unitaires) A et B, compatible avec les lois de ces anneaux et qui envoie le neutre multiplicatif de A sur le neutre multiplicatif de B. Un morphisme d'anneaux est une application f entre deux anneaux (unitaires) A et B qui vérifie les trois propriétés suivantes : Pour tous a, b dans A : f(a + b) = f(a) + f(b) f(a ∙ b) = f(a) ∙ f(b) f(1A) = 1B.
Congruence relationIn abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. The prototypical example of a congruence relation is congruence modulo on the set of integers.
Sous-groupeUn sous-groupe est un objet mathématique décrit par la théorie des groupes. Dans cet article, (G, ∗) désigne un groupe d'élément neutre e. Dans la pratique, on note la loi interne du sous-groupe avec le même symbole que celui de la loi interne du groupe, c'est-à-dire ∗. Si G est un groupe alors {e} (le groupe réduit à l'élément neutre) et G sont toujours des sous-groupes de G. Ce sont les sous-groupes triviaux de G. On les appelle également les sous-groupes impropres de G.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).