Indice (analyse complexe)vignette|L'indice du point p par rapport au lacet C vaut 2. En mathématiques, l'indice d'un point par rapport à un lacet est intuitivement le nombre de tours (dans le sens contraire des aiguilles d'une montre) réalisé par le lacet autour du point. Cette notion joue un rôle central en analyse complexe, car l'indice intervient dans la théorie de Cauchy globale et, en particulier, dans la formule intégrale de Cauchy. L'indice apparaît également dans le théorème des résidus.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Limite (mathématiques élémentaires)La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une limite en ou (pour une fonction numérique ou une suite), ces deux cas apparemment différents pouvant être unifiés à travers la notion topologique de voisinage. Les limites servent (entre autres) à définir les notions fondamentales de continuité et de dérivabilité.
Fonction signeLa fonction signe, ou signum en latin, souvent représentée sgn dans les expressions, est une fonction mathématique qui extrait le signe d'un nombre réel, c'est-à-dire que l' d'un nombre par cette application est 1 si le nombre est strictement positif, 0 si le nombre est nul, et -1 si le nombre est strictement négatif : La fonction signe peut également s’écrire : On peut aussi la construire en résultat d'une limite, notamment en jouant avec les propriétés de certaines fonctions hyperboliques.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Mathematical constantA mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).
Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Angle hyperboliquedroite|vignette|200x200px|Une hyperbole est une figure délimitée par deux rayons et un arc d'hyperbole. Le secteur grisé est en position standard si En géométrie, l'angle hyperbolique est un nombre réel déterminé par l'aire du secteur hyperbolique correspondant de xy = 1 dans le quadrant I du plan cartésien. L'angle hyperbolique paramètre l'hyperbole unité, qui a des fonctions hyperboliques comme coordonnées. En mathématiques, l'angle hyperbolique est une mesure invariante car il est conservé par rotation hyperbolique.
Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Limite d'une suiteEn mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.