Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Couvre les identités algébriques, la trigonométrie et les fonctions réelles, y compris les fonctions injectables, surjectives, bijectives et réciproques.
Explore les singularités essentielles et le calcul des résidus dans une analyse complexe, en soulignant la signification de coefficients spécifiques et la validité des intégrales.
Couvre la composition des fonctions, de la continuité et des fonctions élémentaires, expliquant le concept de continuité et la construction des fonctions élémentaires.