Intraclass correlationIn statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
Censure (statistiques)En fiabilité, la censure est le fait de prendre en compte des systèmes non-défaillants pour établir la loi de fiabilité. Plus généralement, le terme s'applique lorsque l'on ne connaît pas avec précision la date de défaillance, soit que la défaillance ne soit pas encore survenue, soit qu'elle n'ait pas été enregistrée avec précision. La censure est une information qui doit être intégrée dans le modèle de fiabilité, même si cette information est moins riche qu'un instant de défaillance défini.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Recursive partitioningRecursive partitioning is a statistical method for multivariable analysis. Recursive partitioning creates a decision tree that strives to correctly classify members of the population by splitting it into sub-populations based on several dichotomous independent variables. The process is termed recursive because each sub-population may in turn be split an indefinite number of times until the splitting process terminates after a particular stopping criterion is reached. Recursive partitioning methods have been developed since the 1980s.
AutocovarianceLa fonction d'autocovariance d'un processus stochastique permet de caractériser les dépendances linéaires existant au sein de ce processus. Si est un processus stationnaire au sens faible alors et pour n'importe quels entiers naturels . Dans ce cas et il suffit alors de définir les autocovariances par la fonction qui à tout associe . La fonction d'autocovariance apparaît alors comme la covariance de ce processus avec une version décalée de lui-même. On appelle l'autocovariance d'ordre .
PrévalenceEn épidémiologie, la prévalence est le rapport entre l'ensemble des cas présents ou passés d'un évènement ou d'une maladie et l'ensemble de la population exposée, à une date donnée. Ce rapport représente la proportion de personnes concernées par le phénomène et n'a pas d'unité. Prévalence et taux de prévalence sont deux termes équivalents. La prévalence est exprimée en pourcentage, en taux pour une population donnée, par exemple 100 000 individus (mais tout autre nombre est possible et doit être précisé).
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Imputation (statistique)En statistique, l’imputation désigne le processus de remplacement des données manquantes avec des valeurs substituées. Quand un point de données est substitué, on parle d’imputation unitaire ; quand une composante de point de données est substituée, on parle d’imputation d'items. Des données manquantes peuvent être à l'origine de trois types de problèmes : elles peuvent introduire une quantité importante de biais statistiques ; elles peuvent rendre le traitement et l'analyse des données plus laborieux ; elles peuvent réduire l'efficacité des méthodes statistiques.
Marginal modelIn statistics, marginal models (Heagerty & Zeger, 2000) are a technique for obtaining regression estimates in multilevel modeling, also called hierarchical linear models. People often want to know the effect of a predictor/explanatory variable X, on a response variable Y. One way to get an estimate for such effects is through regression analysis. In a typical multilevel model, there are level 1 & 2 residuals (R and U variables). The two variables form a joint distribution for the response variable ().