Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Couvre les récipients à pression linéaires et les bases de la géométrie différentielle des surfaces, y compris les vecteurs de base covariants et contravariants.
Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.