Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
N-squelettevignette|Le diagramme de Schlegel permet de visualiser le 1-squelette de cet hexadécachore, polytope de dimension 4. En mathématiques, on définit le n-squelette, ou squelette d'ordre n de certains objets construits avec des blocs des différentes dimensions : les polytopes de la géométrie affine, les CW-complexes de la topologie algébrique. Le squelette d'ordre 0 est formé des sommets, celui d'ordre 1 des sommets et des arêtes, et de façon générale le squelette d'ordre n est formé de la réunion des cellules d'ordre inférieur ou égal à n.
Torelli theoremIn mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) C is determined by its Jacobian variety J(C), when the latter is given in the form of a principally polarized abelian variety. In other words, the complex torus J(C), with certain 'markings', is enough to recover C. The same statement holds over any algebraically closed field.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Diagonal formIn mathematics, a diagonal form is an algebraic form (homogeneous polynomial) without cross-terms involving different indeterminates. That is, it is for some given degree m. Such forms F, and the hypersurfaces F = 0 they define in projective space, are very special in geometric terms, with many symmetries. They also include famous cases like the Fermat curves, and other examples well known in the theory of Diophantine equations. A great deal has been worked out about their theory: algebraic geometry, local zeta-functions via Jacobi sums, Hardy-Littlewood circle method.
Generic pointIn algebraic geometry, a generic point P of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.
Application projectiveEn mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .