Matrix determinant lemmaIn mathematics, in particular linear algebra, the matrix determinant lemma computes the determinant of the sum of an invertible matrix A and the dyadic product, uvT, of a column vector u and a row vector vT. Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that Here, uvT is the outer product of two vectors u and v. The theorem can also be stated in terms of the adjugate matrix of A: in which case it applies whether or not the square matrix A is invertible.
Signature (topology)In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group The basic identity for the cup product shows that with p = q = 2k the product is symmetric.
Coordonnées plückeriennesLes coordonnées plückeriennes sont des coordonnées grassmanniennes particulières. Inventées par Julius Plücker, elles ont ensuite été généralisées entre 1832 et 1839 par Hermann Grassmann. On considère la grassmannienne formée par les sous-espaces de dimension d'un espace de dimension , c'est-à-dire la plus simple des grassmanniennes qui ne soit pas un espace projectif. Elle a été identifiée par Plücker comme l'ensemble des droites de l'espace projectif de dimension 3.
Calcul de l'enveloppe convexeEn algorithmique géométrique, le calcul de l'enveloppe convexe est un problème algorithmique. Il consiste, étant donné un ensemble de points, à calculer leur enveloppe convexe. L'enveloppe convexe d'un ensemble de points est le plus petit ensemble convexe qui les contient tous. C'est un polyèdre dont les sommets sont des points de l'ensemble. Le calcul de l'enveloppe convexe consiste à calculer une représentation compacte de l'enveloppe, le plus souvent les sommets de celle-ci.
PairingIn mathematics, a pairing is an R-bilinear map from the Cartesian product of two R-modules, where the underlying ring R is commutative. Let R be a commutative ring with unit, and let M, N and L be R-modules. A pairing is any R-bilinear map . That is, it satisfies and for any and any and any . Equivalently, a pairing is an R-linear map where denotes the tensor product of M and N. A pairing can also be considered as an R-linear map which matches the first definition by setting A pairing is called perfect if the above map is an isomorphism of R-modules.
Vector algebraIn mathematics, vector algebra may mean: Linear algebra, specifically the basic algebraic operations of vector addition and scalar multiplication; see vector space. The algebraic operations in vector calculus, namely the specific additional structure of vectors in 3-dimensional Euclidean space of dot product and especially cross product. In this sense, vector algebra is contrasted with geometric algebra, which provides an alternative generalization to higher dimensions.
Ε-quadratic formIn mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms.
Théorème de Perron-FrobeniusEn algèbre linéaire et en théorie des graphes, le théorème de Perron-Frobenius, démontré par Oskar Perron et Ferdinand Georg Frobenius, a d'importantes applications en théorie des probabilités (chaînes de Markov), en théorie des systèmes dynamiques, en économie (analyse entrée-sortie), en théorie des graphes, en dynamique des populations () et dans l'aspect mathématique du calcul des pagerank de Google. Ce théorème permet de montrer, sous certaines conditions, qu'une chaîne de Markov ergodique sur un espace d'états fini converge en loi vers son unique mesure invariante.
Underdetermined systemIn mathematics, a system of linear equations or a system of polynomial equations is considered underdetermined if there are fewer equations than unknowns (in contrast to an overdetermined system, where there are more equations than unknowns). The terminology can be explained using the concept of constraint counting. Each unknown can be seen as an available degree of freedom. Each equation introduced into the system can be viewed as a constraint that restricts one degree of freedom.
Matrice modaleEn algèbre linéaire, la matrice modale est utilisée dans le processus de diagonalisation impliquant des valeurs propres et des vecteurs propres. Plus précisément la matrice modale pour la matrice est la matrice n × n formée avec les vecteurs propres de sous forme de colonnes. Elle est utilisée en diagonalisation où est une matrice diagonale n × n avec les valeurs propres de sur la diagonale principale de et des zéros ailleurs. La matrice s'appelle la matrice spectrale pour .