Cas pathologiquedroite|vignette|La fonction de Weierstrass est une fonction continue nulle part dérivable. En mathématiques, un objet pathologique est un objet qui s'oppose à l'intuition que l'on a de la situation générale. Par exemple, la fonction de Weierstrass, qui est une fonction continue nulle part dérivable, peut être considérée comme pathologique car elle s'oppose à l'intuition que l'on a des fonctions continues. Ainsi, Henri Poincaré écrit à leur sujet : Objet exceptionnel Position générale Catégorie:Vocabulaire d
Möbius planeIn mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity.
Pseudosphèrethumb|right|La pseudosphère étudiée par Eugenio Beltrami En géométrie, le terme de pseudosphère est utilisé pour décrire diverses surfaces dont la courbure de Gauss est constante et négative. Selon le contexte, il peut se référer soit à une surface théorique de courbure négative (une variété riemannienne), soit à une surface effectivement réalisée de l'espace, telle qu'une tractricoïde. Dans son acception la plus générale, une pseudosphère de rayon R est une surface (complète et simplement connexe) de courbure totale en tout point égale à , par analogie à la sphère de rayon R dont la courbure est .
Closed manifoldIn mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.
Espace localement simplement connexeEn mathématiques, un espace localement simplement connexe est un espace topologique qui admet une base d'ouverts simplement connexes. Tout espace localement simplement connexe est donc localement connexe par arcs et a fortiori localement connexe. Le cercle est localement simplement connexe mais pas simplement connexe. La boucle d'oreille hawaïenne n'est pas localement simplement connexe ni simplement connexe, puisqu'elle n'est même pas . Le cône de la boucle d'oreille hawaïenne est contractile donc simplement connexe, mais n'est pas localement simplement connexe.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Homologie (mathématiques)En mathématiques, l'homologie est une manière générale d'associer une séquence d'objets algébriques tels que des groupes abéliens ou des modules à d'autres objets mathématiques tels que des espaces topologiques. Les groupes d'homologie ont été définis à l'origine dans la topologie algébrique. Des constructions similaires sont disponibles dans beaucoup d'autres contextes, tels que l'algèbre abstraite, les groupes, les algèbres de Lie, la théorie de Galois et la géométrie algébrique.
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Disque de PoincaréEn géométrie, le disque de Poincaré (appelé aussi représentation conforme) est un modèle du plan hyperbolique, ou plus généralement de la géométrie hyperbolique à n dimensions, où les points sont situés dans la boule unité ouverte de dimension n et les droites sont soit des arcs de cercles contenus dans cette boule et orthogonaux à sa frontière, soit des diamètres de la boule. En plus du modèle de Klein et du demi-plan de Poincaré, il a été proposé par Eugenio Beltrami pour démontrer que la consistance de la géométrie hyperbolique était équivalente à la consistance de la géométrie euclidienne.
Boule (topologie)En topologie, une boule est un type de voisinage particulier dans un espace métrique. Le nom évoque, à juste titre, la boule solide dans l'espace usuel à trois dimensions, mais la notion se généralise entre autres à des espaces de dimension plus grande (ou plus petite) ou encore de norme non euclidienne. Dans ce cas, une boule peut ne pas être « ronde » au sens usuel du terme.