Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Squeezed coherent stateIn physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: and , respectively.
Fock stateIn quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
Quantifications canoniquesEn physique, la quantification canonique est une procédure pour quantifier une théorie classique, tout en essayant de préserver au maximum la structure formelle, comme les symétries, de la théorie classique. Historiquement, ce n'était pas tout à fait la voie de Werner Heisenberg pour obtenir la mécanique quantique, mais Paul Dirac l'a introduite dans sa thèse de doctorat de 1926, la «méthode de l'analogie classique» pour la quantification, et l'a détaillée dans son texte classique.
Paquet d'ondeEn physique, un paquet d'onde, ou train d'onde, est une enveloppe ou un paquet contenant un nombre arbitraire d'ondes élémentaires. Il existe aussi des demi paquets d'onde, qui sont des paquets d'onde scindés en quadrature de phase. En mécanique quantique, le paquet d'onde possède une signification particulière : il est interprété comme étant une onde de probabilité qui décrit la probabilité pour une particule (ou des particules) dans un état donné d'avoir une position et une quantité de mouvement données.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Principe de correspondanceEn physique, le principe de correspondance, proposé la première fois par Niels Bohr en 1923, établit que le comportement quantique d'un système peut se réduire à un comportement de physique classique, quand les nombres quantiques mis en jeu sont très grands, ou quand la quantité d'action représentée par la constante de Planck peut être négligée devant l'action mise en œuvre dans le système. Les lois de la mécanique quantique sont extrêmement efficaces dans la description des objets microscopiques, comme les atomes ou les particules.
Espace des positions et espace des momentsEn physique et en géométrie, espace des positions et espace des moments sont deux espaces vectoriels étroitement liés, souvent tridimensionnels, mais en général pouvant être de toute dimension finie. L'espace des positions (également espace réel ou espace des coordonnées) est l'ensemble de tous les vecteurs de position , qui ont les dimensions d'une longueur ; un vecteur de position définit un point dans l'espace (si le vecteur position d'une particule ponctuelle varie avec le temps, il tracera un chemin, la trajectoire d'une particule).
Particule dans une boîteEn physique, la particule dans une boîte (ou puits de potentiel carré) est une représentation simple d'un système relevant de la mécanique quantique. On étudie une particule confinée dans une région finie de l'espace grâce à des murs de potentiel infini aux bords de cette région. La particule n'est soumise à aucune force à l'intérieur de la boîte, mais y est retenue par une force infinie aux bords. C'est une situation similaire à un gaz confiné dans un contenant. Pour simplifier, le cas unidimensionnel sera premièrement traité.