Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
TenseurEn mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur est un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Théorie des catégoriesLa théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.