Logique linéairevignette|Arbre de résolution linéaire En logique mathématique et plus précisément en théorie de la démonstration, la logique linéaire est un système formel inventé par le logicien Jean-Yves Girard en 1987. Du point de vue logique, la logique linéaire décompose et analyse les logiques classique et intuitionniste. Du point de vue calculatoire, elle est un système de type pour le lambda-calcul permettant de spécifier certains usages des ressources. La logique classique n'étudie pas les aspects les plus élémentaires du raisonnement.
Interpretability logicInterpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities. Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.
InterpretabilityIn mathematical logic, interpretability is a relation between formal theories that expresses the possibility of interpreting or translating one into the other. Assume T and S are formal theories. Slightly simplified, T is said to be interpretable in S if and only if the language of T can be translated into the language of S in such a way that S proves the translation of every theorem of T. Of course, there are some natural conditions on admissible translations here, such as the necessity for a translation to preserve the logical structure of formulas.
Affine logicAffine logic is a substructural logic whose proof theory rejects the structural rule of contraction. It can also be characterized as linear logic with weakening. The name "affine logic" is associated with linear logic, to which it differs by allowing the weakening rule. Jean-Yves Girard introduced the name as part of the geometry of interaction semantics of linear logic, which characterizes linear logic in terms of linear algebra; here he alludes to affine transformations on vector spaces. Affine logic predated linear logic.
Logique modale normaleEn logique, une logique modale normale est un ensemble L de formules modales tel que L contient: Toutes les tautologies propositionnelles; Toutes les instances du schéma de Kripke: et est limité sous: Règle détachement (Modus Ponens): ; règle de nécessitation: implique . La plus petite logique répondant aux conditions ci-dessus est appelé K. La plupart des logiques modales couramment utilisés de nos jours (en termes de motivations philosophiques), par exemple Le S4 et S5 de C. I. Lewis, sont des extensions de K.