Modèle additifEn statistiques, le modèle additif (MA, ou AM pour Additive Model) est une méthode de régression non paramétrique. Il a été suggéré par Jerome H. Friedman et Werner Stuetzle et est utilisé par l'algorithme ACE. Le modèle additif utilise un lissage unidimensionnel pour construire une classe restreinte de modèles de régression non paramétriques. De ce fait, il est moins affecté par le fléau de la dimension que, par exemple, un lissage p-dimensionnel.
Multivariate kernel density estimationKernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted.
Estimateur de Kaplan-MeierL'estimateur de Kaplan-Meier, également connu sous le nom de l’estimateur produit-limite, est un estimateur pour estimer la fonction de survie d’après des données de durée de vie. En recherche médicale, il est souvent utilisé pour mesurer la fraction de patients en vie pour une certaine durée après leur traitement. Il est également utilisé en économie et en écologie. Cet estimateur doit son nom à Edward L. Kaplan et Paul Meier.
Lissage (mathématiques)vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.
Test de Wilcoxon-Mann-WhitneyEn statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches. Il a été proposé par Frank Wilcoxon en 1945 et par Henry Mann et Donald Ransom Whitney en 1947. L'énorme avantage de ce test est sa simplicité, même si de ce fait son utilisation est limitée.
Régression non paramétriqueLa régression non paramétrique est une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée, mais est construit selon les informations provenant des données. La régression non paramétrique exige des tailles d'échantillons plus importantes que celles de la régression basée sur des modèles paramétriques parce que les données doivent fournir la structure du modèle ainsi que les estimations du modèle. On dispose de données numériques que l'on suppose corrélées.
Moyenne mobileLa moyenne mobile, ou moyenne glissante, est un type de moyenne statistique utilisée pour analyser des séries ordonnées de données, le plus souvent des séries temporelles, en supprimant les fluctuations transitoires de façon à en souligner les tendances à plus long terme. Cette moyenne est dite mobile parce qu'elle est recalculée de façon continue, en utilisant à chaque calcul un sous-ensemble d'éléments dans lequel un nouvel élément remplace le plus ancien ou s'ajoute au sous-ensemble.
Density estimationIn statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as a random sample from that population. A variety of approaches to density estimation are used, including Parzen windows and a range of data clustering techniques, including vector quantization.
Corrélation de SpearmanEn statistique, la corrélation de Spearman ou rho de Spearman, nommée d'après Charles Spearman (1863-1945) et souvent notée par la lettre grecque (rho) ou est une mesure de dépendance statistique non paramétrique entre deux variables. La corrélation de Spearman est étudiée lorsque deux variables statistiques semblent corrélées sans que la relation entre les deux variables soit de type affine. Elle consiste à trouver un coefficient de corrélation, non pas entre les valeurs prises par les deux variables mais entre les rangs de ces valeurs.
Rank correlationIn statistics, a rank correlation is any of several statistics that measure an ordinal association—the relationship between rankings of different ordinal variables or different rankings of the same variable, where a "ranking" is the assignment of the ordering labels "first", "second", "third", etc. to different observations of a particular variable. A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them.