thumb|Exemple d'histogramme. Échantillon de 100 valeurs générées pour une distribution normale N(0,1). En statistique, un histogramme est une représentation graphique permettant de représenter la répartition empirique d'une variable aléatoire en la représentant avec des colonnes correspondant chacune à une classe. L’histogramme est un moyen rapide pour étudier la répartition d’une variable. Il peut être, en particulier utilisé en gestion de la qualité lorsque les données sont obtenues lors d’une fabrication. Exemples : diamètre d’un arbre après usinage, dureté d’une série de pièces après un traitement thermique, concentration d’un élément dans la composition d’alliages produit par une fonderie, masse de préparation alimentaire dans une boîte de conserve, répartition de la luminosité des pixels dans une photographie. L’histogramme est un outil « visuel » qui permet de détecter certaines anomalies ou de faire un diagnostic avant d’engager une démarche d’amélioration. Utilisé dans ce cadre, l’histogramme est un outil « qualitatif ». Pour pouvoir bien mener l’étude de la dispersion d’une variable à l’aide d’un ou de plusieurs histogrammes, il faut avoir une bonne connaissance de la variable étudiée. De même, il faut connaître les conditions de collecte des données : fréquence de mesure, outil de mesure utilisé, possibilité de mélange de lots, possibilité de tri etc. La première phase est la collecte des données en cours de fabrication. Cette collecte peut être réalisée soit de façon exceptionnelle à l’occasion de l’étude de la variable soit en utilisant un relevé automatique ou manuel fait lors d’un contrôle réalisé dans le cadre de la surveillance du procédé de fabrication. Sans qu’il soit réellement possible de donner un nombre minimum, il faut que le nombre de valeurs relevées soit suffisant. Plus on dispose d’un nombre élevé de valeurs, plus l’interprétation sera aisée. Le choix des classes, soit leur nombre et leurs largeurs, n'est pas univoque. Il convient pour les déterminer de prendre en compte à la fois la nature de la distribution et le nombre de points de données.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (14)
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
MATH-231: Probability and statistics I
Introduction to notions of probability and basic statistics.
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
Afficher plus
Séances de cours associées (34)
NISQ et IBM Q
Explore les appareils NISQ et IBM Q, couvrant les circuits quantiques bruyants, les technologies qubit et le développement d'algorithmes quantiques.
Modes de convergence des variables aléatoires
Couvre les modes de convergence des variables aléatoires et du théorème des limites centrales, en discutant des implications et des approximations.
Estimation du regroupement et de la densité
Couvre les algorithmes de clustering, PCA, LDA, K-means, GMM, KDE et Mean Shift pour l'estimation de la densité et le clustering.
Afficher plus
Publications associées (33)
Concepts associés (15)
Mode (statistiques)
En statistique, le mode, ou valeur dominante, est la valeur la plus représentée d'une variable quelconque dans une population donnée. Une répartition peut être unimodale ou plurimodale (bimodale, trimodale...), si deux ou plusieurs valeurs de la variable considérée émergent également, voire sans aucun mode (distribution uniforme) si toutes les valeurs de la variable considérée émergent également. Dans le cas d'une répartition en classes d'amplitudes égales, la classe modale désigne celle qui a le plus fort effectif.
Fréquence (statistiques)
vignette|Fréquence des traits de kanji En statistique, on appelle fréquence absolue l'effectif des observations d'une classe et fréquence relative ou simplement fréquence, le quotient de cet effectif par celui de la population. L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
Écart type
thumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.