Sphère exotiqueEn mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». La n-sphère unité, Sn, est l'ensemble de tous les n+1-uplets (x1, x2, ...
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
Mouvements de ReidemeisterEn mathématiques, et plus précisément en théorie des nœuds, les mouvements de Reidemeister sont des mouvements locaux de brins d'un nœud dans diagrammes de nœuds. Kurt Reidemeister, en 1927, et, indépendamment, Alexander Briggs en 1926, ont démontré que deux diagrammes de nœuds représentent le même nœud, si on peut passer de l'un à l'autre par une suite de mouvements de Reidemeister. Il y en a trois types de mouvements comme montrés sur la figure à droite. On numérote le type de mouvement selon le nombre de morceaux de brins qui y apparaît.
Locally finite collectionA collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Cohomology operationIn mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from F to itself. Throughout there have been two basic points: the operations can be studied by combinatorial means; and the effect of the operations is to yield an interesting bicommutant theory.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Théorème d'excisionLe théorème d'excision est un théorème en topologie algébrique sur l' donnés un espace topologique X et des sous-espaces A et U tels que U soit aussi un sous-espace de A, le théorème énonce que sous certaines circonstances, on peut extraire («exciser») U des deux autres espaces A et X de telle sorte que les homologies relatives des couples (X, A) et (X \ U, A \ U) soient isomorphes. On l'utilise parfois pour faciliter le calcul de groupes d'homologie singulière (après excision d'un sous-espace bien choisi).
Relative homologyIn algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Given a subspace , one may form the short exact sequence where denotes the singular chains on the space X. The boundary map on descends to and therefore induces a boundary map on the quotient.
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.