Résumé
thumb|upright=1.5|Polynômes de Legendre En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions polynomiales P(x), sur l'intervalle x ∈ [–1, 1], de l'équation différentielle de Legendre : dans le cas particulier où le paramètre n est un entier naturel. De façon équivalente, les polynômes de Legendre sont les fonctions propres de l'endomorphisme de R[X] défini par : pour les valeurs propres . Ces polynômes orthogonaux ont de nombreuses applications tant en mathématiques, par exemple pour la décomposition d'une fonction en série de polynômes de Legendre, qu'en physique, où l'équation de Legendre apparaît naturellement lors de la résolution des équations de Laplace ou de Helmholtz en coordonnées sphériques. On appelle équation de Legendre l'équation différentielle linéaire homogène d'ordre 2 : avec en général . On trouve les solutions non nulles de cette équation sous forme de séries entières en utilisant la méthode de Frobenius. D'après le théorème de Fuchs, puisque les seuls points singuliers de cette équation sont 1 et –1, le rayon de convergence d'une telle série vaut au moins 1. Si α n'est pas entier, ce rayon est exactement égal à 1 car la série ne peut pas converger à la fois en 1 et en –1. En revanche, si α est un entier naturel, une (et une seule) de ces séries entières converge sur [–1, 1] et vaut 1 au point 1 (cette solution est alors polynomiale, de degré α et de même parité que cet entier). On peut donc définir le polynôme de Legendre P (pour tout entier naturel n) comme l'unique solution définie en 1 et –1 du problème de Cauchy : De façon plus abstraite, il est possible de définir les polynômes de Legendre P comme les fonctions propres pour les valeurs propres –n(n+ 1), avec n entier, de l'endomorphisme défini sur : Cette définition plus abstraite est intéressante notamment pour démontrer les propriétés d'orthogonalité des polynômes de Legendre .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.