Concepts associés (17)
Grandeur sans dimension
Une grandeur sans dimension ou adimensionnelle est une grandeur physique dont la dimension vaut , ce qui revient à dire que tous ses exposants dimensionnels sont nuls : Une grandeur adimensionelle peut être obtenue à partir d'une combinaison de grandeurs dimensionnées, dont l'analyse dimensionnelle permet de vérifier la dimension. Une grandeur adimensionelle peut cependant posséder une unité, comme par exemple les angles dont l'unité est le radian. D'autres exemples de grandeurs adimensionnées sont l'indice de réfraction ou la densité.
Asymétrie (statistiques)
En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Coefficient de Gini
Le coefficient de Gini, ou indice de Gini, est une mesure statistique permettant de rendre compte de la répartition d'une variable (salaire, revenus, patrimoine) au sein d'une population. Autrement dit, il mesure le niveau d'inégalité de la répartition d'une variable dans la population. Ce coefficient est typiquement utilisé pour mesurer l'inégalité des revenus dans un pays. Il a été développé par le statisticien italien Corrado Gini.
Moyenne harmonique
La moyenne harmonique H de nombres réels strictement positifs a1, ..., a est définie par : C'est l'inverse de la moyenne arithmétique des inverses des termes. La moyenne harmonique est donc utilisée lorsqu'on veut déterminer un rapport moyen, dans un domaine où il existe des liens de proportionnalité inverses. Dans certains cas, la moyenne harmonique donne la véritable notion de « moyenne ».
Variance (mathématiques)
vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Intervalle de confiance
vignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Cote Z (statistiques)
La cote Z correspond au nombre d'écarts types séparant un résultat de la moyenne. Au Québec, cette cote était la cote principalement utilisée pour évaluer le rendement des étudiants collégiaux par les universités. Elle existe toujours en tant que composante de la cote R. La cote Z se calcule de la même façon que la variable centrée réduite : où différence entre le résultat et la moyenne, divisé par l'écart-type valeur Moyenne du groupe Écart type du groupe Les universités du Québec utilisaient la cote Z jusqu'en 1994 pour sélectionner les étudiants.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.