Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
LINPACKLINPACK est une bibliothèque de fonctions en Fortran pour l'algèbre linéaire, et notamment la résolution numérique de systèmes d'équations linéaires. Avec EISPACK pour le calcul des valeurs et vecteurs propres, elle est à l'origine de MATLAB dont le but premier était de permettre son utilisation sans programmation en Fortran. LINPACK a été supplantée par LAPACK. Le Linpack est un test de performance servant à classer les plus puissants superordinateurs du monde dans le TOP500.
Matrice tridiagonaleEn mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice dont tous les coefficients qui ne sont ni sur la diagonale principale, ni sur la diagonale juste au-dessus, ni sur la diagonale juste en dessous, sont nuls. Par exemple, la matrice suivante est tridiagonale : Une matrice , dont on note les coefficients a, est dite tridiagonale si : a = 0 pour tous (i, j) tels que i – j > 1, autrement dit si c'est une matrice de Hessenberg à la fois supérieure et inférieure.
NumPyNumPy est une bibliothèque pour langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. Plus précisément, cette bibliothèque logicielle libre et open source fournit de multiples fonctions permettant notamment de créer directement un tableau depuis un fichier ou au contraire de sauvegarder un tableau dans un fichier, et manipuler des vecteurs, matrices et polynômes.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Factorisation de CholeskyLa factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
Array programmingIn computer science, array programming refers to solutions that allow the application of operations to an entire set of values at once. Such solutions are commonly used in scientific and engineering settings. Modern programming languages that support array programming (also known as vector or multidimensional languages) have been engineered specifically to generalize operations on scalars to apply transparently to vectors, matrices, and higher-dimensional arrays.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.