FeuilletageEn mathématiques, et plus précisément en géométrie différentielle, on dit qu'une variété est feuilletée, ou munie d'un feuilletage, si elle se décompose en sous-variétés de même dimension, appelées feuilles, qui localement, s'empilent comme les sous-espaces R × R. Formellement, un feuilletage sur est un atlas feuilleté, autrement dit une famille de cartes locales , où , et les changements de carte préservent cette décomposition : pour tout , . thumb|Schéma de changement de carte feuilletée.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
Topologie géométriqueEn mathématiques, la topologie géométrique est l'étude des variétés et des applications entre elles, en particulier les plongements d'une variété dans une autre. Quelques exemples de sujets en topologie géométrique sont l'orientablité, la décomposition en anses, la platitude locale et le théorème de Jordan-Schoenflies dans le plan et en dimensions supérieures.
Manifold decompositionIn topology, a branch of mathematics, a manifold M may be decomposed or split by writing M as a combination of smaller pieces. When doing so, one must specify both what those pieces are and how they are put together to form M. Manifold decomposition works in two directions: one can start with the smaller pieces and build up a manifold, or start with a large manifold and decompose it. The latter has proven a very useful way to study manifolds: without tools like decomposition, it is sometimes very hard to understand a manifold.
Dehn surgeryIn topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link. It is often conceptualized as two steps: drilling then filling. Given a 3-manifold and a link , the manifold drilled along is obtained by removing an open tubular neighborhood of from . If , the drilled manifold has torus boundary components .
Prime manifoldIn topology, a branch of mathematics, a prime manifold is an n-manifold that cannot be expressed as a non-trivial connected sum of two n-manifolds. Non-trivial means that neither of the two is an n-sphere. A similar notion is that of an irreducible n-manifold, which is one in which any embedded (n − 1)-sphere bounds an embedded n-ball. Implicit in this definition is the use of a suitable , such as the category of differentiable manifolds or the category of piecewise-linear manifolds.
Problèmes du prix du millénaireLes problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en . La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En , six des sept problèmes demeurent non résolus. Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirmée ni rejetée faute d'une démonstration mathématique suffisamment rigoureuse ; soit définir et expliciter l'ensemble des solutions de certaines équations.
HandlebodyIn the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds. Handles are used to particularly study 3-manifolds. Handlebodies play a similar role in the study of manifolds as simplicial complexes and CW complexes play in homotopy theory, allowing one to analyze a space in terms of individual pieces and their interactions.
Anneaux borroméensEn mathématiques et plus précisément en théorie des nœuds, les anneaux borroméens constituent un entrelacs de trois cercles (au sens topologique) qui ne peuvent être détachés les uns des autres même en les déformant, mais tel que la suppression de n'importe quel cercle libère les deux cercles restants. Autrement dit, il s'agit d'un exemple d'entrelacs brunnien. La dénomination vient de l'utilisation qui en était faite dans les armoiries d'une famille italienne, les Borromeo.