Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Pierre-Simon de LaplacePierre-Simon de Laplace ou Pierre-Simon Laplace, comte Laplace, puis de Laplace, né le à Beaumont-en-Auge et mort le à Paris, est un mathématicien, astronome, physicien et homme politique français. Laplace est l'un des principaux scientifiques de la période napoléonienne. Il a apporté des contributions fondamentales dans différents champs des mathématiques, de l'astronomie et de la théorie des probabilités. Il a été l'un des scientifiques les plus influents de son temps, notamment par son affirmation du déterminisme.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Many-body problemThe many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev–Yakubovsky equations) and are thus sometimes separately classified as few-body systems.
Mécanique célestethumb|Paramètres d'une orbite elliptique. La mécanique céleste décrit le mouvement d'objets astronomiques tels que les étoiles et planètes à l'aide de théories physiques et mathématiques. Les domaines de la physique les plus directement concernés sont la cinématique et la dynamique (classique ou relativiste). Dans l'Antiquité, on distingue la mécanique céleste de la mécanique terrestre, les deux mondes étant considérés comme étant régis par des lois complètement différentes (ici-bas, les « choses » « tombent », là-haut elles se « promènent »).
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Dégénérescence (physique quantique)En physique quantique, la dégénérescence est le fait pour plusieurs états quantiques distincts de se retrouver au même niveau d'énergie. Un niveau d'énergie est dit dégénéré s'il correspond à plusieurs états distincts d'un atome, molécule ou autre système quantique. Le nombre d'états différents qui correspond à un niveau donné est dit son degré de dégénérescence. Mathématiquement, la dégénérescence est décrite par un opérateur hamiltonien ayant plusieurs fonctions propres avec la même valeur propre.
Urbain Le VerrierUrbain Le Verrier, né à Saint-Lô le , mort à Paris le , est un astronome, mathématicien français spécialisé en mécanique céleste et fondateur de la météorologie moderne française. Il est mondialement connu pour avoir découvert la planète Neptune par le calcul le 23 septembre 1846. Urbain Jean Joseph Le Verrier est né dans une famille bourgeoise modeste, d'un père, Louis-Baptiste Le Verrier, « surnuméraire dans l'administration des domaines » et de Marie-Jeanne-Joséphine-Pauline de Baudre.
Approximation BKWEn physique, l'approximation BKW (en l'honneur de Léon Brillouin, Hendrik Anthony Kramers et Gregor Wentzel) est une méthode développée en 1926 qui permet d'étudier le régime semi-classique d'un système quantique. La fonction d'onde est développée asymptotiquement au premier ordre de la puissance du quantum d'action . L'idée de base de la méthode BKW est que l'équation de Schrödinger se dérive de l'équation de propagation des ondes.