Treillis des sous-groupesthumb|Diagramme de Hasse du treillis des sous-groupes du groupe diédral D. En mathématique, le treillis des sous-groupes d'un groupe G est le treillis constitué des sous-groupes de G, muni de l'inclusion comme relation d'ordre partielle. La borne supérieure de deux sous-groupes a et b est le sous-groupe engendré par l'union de a et b et leur borne inférieure est leur intersection. Le groupe diédral D des huit isométries du carré contient dix sous-groupes, y compris D lui-même et son sous-groupe trivial.
Groupe dicycliqueEn algèbre et plus précisément en théorie des groupes, le groupe dicyclique (pour tout entier n ≥ 2) est défini par la présentation Les groupes () sont les groupes quaternioniques (les groupes dicycliques nilpotents). En particulier, est le groupe des quaternions. est un groupe non abélien d'ordre 4n, extension par le sous-groupe cyclique engendré par (normal et d'ordre 2n) d'un groupe d'ordre 2. Il est donc résoluble. Contrairement au groupe diédral D, cette extension n'est pas un produit semi-direct.
Polycyclic groupIn mathematics, a polycyclic group is a solvable group that satisfies the maximal condition on subgroups (that is, every subgroup is finitely generated). Polycyclic groups are finitely presented, which makes them interesting from a computational point of view. Equivalently, a group G is polycyclic if and only if it admits a subnormal series with cyclic factors, that is a finite set of subgroups, let's say G0, ...
Groupe super-résolubleEn algèbre, un groupe est dit super-résoluble s'il possède une suite normale (avec G normal dans G) dont tous les quotients G/G sont monogènes. Détaillons les implications strictes : super-résoluble ⇒ polycyclique ⇒ résoluble. Tout groupe super-résoluble est (notion plus faible où l'on demande seulement que chaque G soit normal dans G). Tout groupe polycyclique est résoluble (notion encore plus faible où de plus, on demande seulement que les quotients G/G soient abéliens).
Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Théorème de Cauchy (groupes)NOTOC En mathématiques, le théorème de Cauchy, nommé en l'honneur du mathématicien Augustin Louis Cauchy, est le suivant : La démonstration de McKay est détaillée sur Wikiversité. On fait agir le groupe par permutation circulaire sur l'ensemble où e désigne l'élément neutre du groupe G. L'équation aux classes affirme que # E est la somme des cardinaux des orbites pour l'action de . Or car étant donné quelconque est totalement déterminé (et vaut Ainsi #E est un multiple de p.
Suite de compositionLa notion de suite de composition est une notion de théorie des groupes. Elle permet, dans un sens qui sera précisé, de considérer un groupe comme « composé » de certains de ses sous-groupes. Soient G un groupe et e son élément neutre. On appelle suite de composition de G toute suite finie (G_0, G_1, ..., G_r) de sous-groupes de G telle queet que, pour tout i ∈ {0, 1, ..., r – 1}, G_i+1 soit sous-groupe normal de G_i.Les quotients G_i/G_i+1 sont appelés les quotients de la suite. Soient Σ_1 = (G_0, G_1, ...
Central seriesIn mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras.
Cœur d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, l'intersection des conjugués, dans un groupe , d'un sous-groupe de est appelée le cœur de (dans ) et est notée cœurG(H) ou encore . Le cœur de dans est le plus grand sous-groupe normal de contenu dans . Si on désigne par / l'ensemble des classes à gauche de modulo (cet ensemble n'est pas forcément muni d'une structure de groupe, n'étant pas supposé normal dans ), on sait que opère à gauche sur / par : Le cœur de dans est le noyau de cette opération.