Sphère exotiqueEn mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». La n-sphère unité, Sn, est l'ensemble de tous les n+1-uplets (x1, x2, ...
Espace de ThomEn topologie, l'espace de Thom est un espace topologique associé à un fibré vectoriel. Il est au cœur de plusieurs constructions homotopiques, parmi lesquelles la construction de Thom-Pontrjagin et le de Thom. Il porte le nom de René Thom, qui a introduit ces constructions en 1954. Soit un fibré vectoriel de rang k sur un espace topologique . Notons l'espace total de ce fibré. Si l'on munit les fibres de d'un produit scalaire, on peut définir les fibrations en boules et en sphères associées : et .
Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
Entrelacs brunnienEn mathématiques, plus précisément en théorie des nœuds, une sous-branche de la topologie, un entrelacs brunnien est un entrelacs non qui devient trivial si l'un quelconque de ses composants est enlevé. En d'autres termes, couper n'importe laquelle des boucles libère toutes les boucles de l'entrelacs. L'adjectif brunnien vient de Hermann Brunn, qui a rédigé l'article Über Verkettung en 1892 dans lequel il prend pour exemples de tels nœuds. L'entrelacs brunnien le plus simple et le plus connu est le nœud borroméen, un entrelacs de trois éléments non noués entre eux.
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Tour de PostnikovEn théorie de l'homotopie, une branche de la topologie algébrique, une tour de Postnikov (ou système de Postnikov) est un objet permettant de reconstruire un espace topologique à partir de ses groupes d'homotopie. Une tour de Postnikov pour un espace X connexe par arcs est un morphisme de X vers une suite d'espaces et d'applications continues, ...→ X →...→ X→ X, tel que chaque application X→X induit des isomorphismes des π pour k ≤ n ; π(X) = 0 pour k > n. Tout CW-complexe connexe possède une telle « tour ».
CobordismeEn topologie différentielle, le cobordisme est une relation d'équivalence entre variétés différentielles compactes. Deux variétés compactes M et N sont dites cobordantes ou en cobordisme si leur réunion disjointe peut être réalisée comme le bord d'une variété à bord compacte L. On dit alors que cette variété L est un cobordisme entre M et N, ou bien que L réalise un cobordisme entre M et N. L'existence d'un tel cobordisme implique que M et N soient de même dimension.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.
Théorème d'HurewiczEn topologie algébrique, le cas le plus simple du théorème d'Hurewicz – attribué à Witold Hurewicz – est une description du premier groupe d'homologie singulière d'un espace topologique connexe par arcs à l'aide de son groupe fondamental. Le groupe fondamental, en un point x, d'un espace X, est défini comme l'ensemble des classes d'homotopie de lacets de X en x, muni de la loi de concaténation des lacets. Il est noté π(X, x).
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.