Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Loi de GumbelEn théorie des probabilités, la loi de Gumbel (ou distribution de Gumbel), du nom d'Émil Julius Gumbel, est une loi de probabilité continue. La loi de Gumbel est un cas particulier de la loi d'extremum généralisée au même titre que la loi de Weibull ou la loi de Fréchet. La loi de Gumbel est une approximation satisfaisante de la loi du maximum d'un échantillon de variables aléatoires indépendantes toutes de même loi, dès que cette loi appartient, précisément, au domaine d'attraction de la loi de Gumbel.
Ajustement de loi de probabilitéLajustement de la loi de probabilité ou simplement lajustement de la loi est l'ajustement d'une loi de probabilité à une série de données concernant la mesure répétée d'un phénomène aléatoire. L'ajustement de la loi a pour but de prédire la probabilité ou de prévoir la fréquence d'occurrence de l'ampleur du phénomène dans un certain intervalle. Il existe de nombreuses lois de probabilité, dont certaines peuvent être ajustées plus étroitement à la fréquence observée des données que d'autres, selon les caractéristiques du phénomène et de la loi.
Famille exponentielleEn théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Infinite divisibility (probability)In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
Loi normale généraliséeEn théorie des probabilités et en statistique, la loi normale généralisée ou loi gaussienne généralisée désigne deux familles de lois de probabilité à densité dont les supports sont l'ensemble des réels. Cette loi rajoute un paramètre de forme à la loi normale. Pour les différencier, les deux familles seront appelées « version 1 » et « version 2 », ce ne sont cependant pas des appellations standards. La densité de probabilité des lois de cette famille est donnée par la formule : où est la fonction gamma, est un paramètre de position, est un paramètre d'échelle et est un paramètre de forme.
Milieu de gamme (statistique)En statistique, le milieu de gamme ou le milieu extrême d'un ensemble de valeurs de données statistiques est la moyenne arithmétique des valeurs maximales et minimales dans un ensemble de données, défini comme: Le milieu de gamme est le point médian de la gamme ; en tant que tel, c'est une mesure de la tendance centrale. Le milieu de gamme est rarement utilisé dans l'analyse statistique pratique, car il manque d'efficacité en tant qu'estimateur pour la plupart des distributions d'intérêt, car il ignore tous les points intermédiaires et manque de robustesse, car les valeurs aberrantes le modifient considérablement.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Valeur absolue des écartsEn statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
Fonction génératrice des momentsEn théorie des probabilités et en statistique, la fonction génératrice des moments d'une variable aléatoire est la fonction M définie par pour tout réel t tel que cette espérance existe. Cette fonction, comme son nom l'indique, est utilisée afin d'engendrer les moments associés à la distribution de probabilités de la variable aléatoire .