Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Décomposition de FrobeniusOn considère un K-espace vectoriel E de dimension finie et un endomorphisme u de cet espace. Une décomposition de Frobenius est une décomposition de E en somme directe de sous-espaces dits cycliques, telle que les polynômes minimaux (ou caractéristiques) respectifs des restrictions de u aux facteurs sont les facteurs invariants de u. La décomposition de Frobenius peut s'effectuer sur un corps quelconque : on ne suppose pas ici que K est algébriquement clos.
Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Elementary divisorsIn algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If is a PID and a finitely generated -module, then M is isomorphic to a finite sum of the form where the are nonzero primary ideals. The list of primary ideals is unique up to order (but a given ideal may be present more than once, so the list represents a multiset of primary ideals); the elements are unique only up to associatedness, and are called the elementary divisors.
Groupe abélien libreEn mathématiques, un groupe abélien libre est un groupe abélien qui possède une base, c'est-à-dire une partie B telle que tout élément du groupe s'écrive de façon unique comme combinaison linéaire à coefficients entiers (relatifs) d'éléments de B. Comme les espaces vectoriels, les groupes abéliens libres sont classifiés (à isomorphisme près) par leur rang, défini comme le cardinal d'une base, et tout sous-groupe d'un groupe abélien libre est lui-même abélien libre.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.