Se penche sur les défis et les possibilités de l'apprentissage automatique dans la modélisation du risque de crédit, en comparant les modèles statistiques traditionnels avec les méthodes d'apprentissage automatique.
Comparer l'apprentissage automatique avec les modèles traditionnels de modélisation du risque de crédit, en mettant l'accent sur les relations non linéaires et les améliorations prédictives.
Explore l'inférence statistique pour les données de banditisme, en mettant l'accent sur les actions de traitement personnalisées et les défis des estimateurs standards.
Couvre les bases du traitement du langage naturel, des approches traditionnelles aux approches modernes, soulignant les défis et l'importance d'étudier les deux méthodes.