Coupole octogonaleIn geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J_4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon. The following formulae for the circumradius, surface area, volume, and height can be used if all faces are regular, with edge length a: The dual of the square cupola has 8 triangular and 4 kite faces: The crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola.
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Polyèdre semi-réguliervignette|Le cuboctaèdre, un des 13 solides d'Archimède. Un polyèdre est dit semi-régulier si ses faces sont des polygones réguliers, et si son groupe de symétrie est transitif sur ses sommets. Ou au moins, c'est ce qui découle de la définition de 1900 de Gosset sur le polytope semi-régulier le plus général. Ces polyèdres incluent : Les treize solides d'Archimède. La série infinie des prismes convexes. La série infinie des antiprismes convexes (leur nature semi-régulière fut observée en premier par Kepler).
Solide de JohnsonEn géométrie, un solide de Johnson est un polyèdre strictement convexe dont chaque face est un polygone régulier et qui n'est pas isogonal (qui n'est donc ni un solide de Platon, ni un solide d'Archimède, ni un prisme ni un antiprisme). Il n'est pas nécessaire que chaque face soit un polygone identique, ou que les mêmes polygones se rejoignent autour de chaque sommet. Un exemple de solide de Johnson est la pyramide à base carrée avec des côtés triangulaires équilatéraux (J1) ; il possède une face carrée et quatre faces triangulaires.
Petit rhombicuboctaèdrethumb|180px|La première version imprimée d'un petit rhombicuboctaèdre, par Léonard de Vinci qui apparait dans la Divine Proportion. thumb|180px|Patron.|alt= Le petit rhombicuboctaèdre est un solide d'Archimède avec huit faces triangulaires et dix-huit faces carrées. Il possède 24 sommets identiques, avec un triangle et trois carrés s'y rencontrant. Le polyèdre possède une symétrie octaédrique, comme le cube et l'octaèdre. Son dual est appelé l'icositétraèdre trapézoïdal, bien que ses faces ne soient pas réellement de vrais trapèzes.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Solide d'ArchimèdeEn géométrie, un solide d'Archimède est un polyèdre convexe semi-régulier, fortement symétrique, composé d'au moins deux sortes de polygones réguliers se rencontrant à des sommets identiques. Ils sont distincts des solides de Platon, qui sont composés d'une seule sorte de polygones se rencontrant à des sommets identiques, et des solides de Johnson, dont les faces polygonales régulières ne se rencontrent pas à des sommets identiques. La symétrie des solides d'Archimède exclut les membres du groupe diédral, les prismes et les antiprismes.
Cuboctaèdrethumb|Cuboctaèdre vu comme cube rectifié. thumb|Patron de cuboctaèdre. Un cuboctaèdre est un polyèdre à 14 faces régulières, dont huit sont des triangles équilatéraux et six sont des carrés. Il comporte : 12 sommets identiques, chacun joignant deux triangles et deux carrés opposés deux à deux ; 24 arêtes identiques, chacune commune à un triangle et à un carré. Il s'agit donc d'un polyèdre quasi-régulier, c’est-à-dire un solide d'Archimède (uniformité des sommets) avec en plus, une uniformité des arêtes.