Résumé
Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing (some jellyfish), kiting (spiders), rolling (some beetles and spiders) or riding other animals (phoresis). Animals move for a variety of reasons, such as to find food, a mate, a suitable microhabitat, or to escape predators. For many animals, the ability to move is essential for survival and, as a result, natural selection has shaped the locomotion methods and mechanisms used by moving organisms. For example, migratory animals that travel vast distances (such as the Arctic tern) typically have a locomotion mechanism that costs very little energy per unit distance, whereas non-migratory animals that must frequently move quickly to escape predators are likely to have energetically costly, but very fast, locomotion. The anatomical structures that animals use for movement, including cilia, legs, wings, arms, fins, or tails are sometimes referred to as locomotory organs or locomotory structures. The term "locomotion" is formed in English from Latin loco "from a place" (ablative of locus "place") + motio "motion, a moving". Animals move through, or on, four types of environment: aquatic (in or on water), terrestrial (on ground or other surface, including arboreal, or tree-dwelling), fossorial (underground), and aerial (in the air). Many animals—for example semi-aquatic animals, and diving birds—regularly move through more than one type of medium. In some cases, the surface they move on facilitates their method of locomotion. Aquatic locomotion In water, staying afloat is possible using buoyancy. If an animal's body is less dense than water, it can stay afloat.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Cours associés (10)
ME-436: Micro/Nano robotics
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
BIO-687: Engineering of musculoskeletal system and rehabilitation
This course presents today research questions and methods associated to the musculoskeletal system, its pathologies, and treatment.
CS-432: Computational motor control
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, (2) a presentation of different techniques for designing models, and (3) an analy
Afficher plus
Séances de cours associées (34)
Kinetics: Forces et moments
Analyse les forces et les moments de locomotion humaine, en mettant l'accent sur les forces interarmées et les risques de blessures.
Impédance Control: Techniques avancées
Explore les techniques avancées de contrôle d'impédance, le retour de force, le modèle avancé et l'impédance variable active en locomotion.
Gliding Paper Experiment
Plonge dans la dynamique du flux lubrifié à travers un projet avec un morceau de papier glissant.
Afficher plus
Concepts associés (30)
Aquatic locomotion
Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals. Swimming evolved a number of times in unrelated lineages. Supposed jellyfish fossils occur in the Ediacaran, but the first free-swimming animals appear in the Early to Middle Cambrian.
Nageoire
thumb|right|300px|Schéma d'un Téléostéen (majorité des poissons actuels, osseux à nageoires rayonnées), le Lampanyctodes hectoris1 opercule2 ligne latérale3 nageoire dorsale4 nageoire molle ou adipeuse5 pédoncule caudal ou queue6 nageoire caudale7 nageoire anale8 photophores9 nageoire ventrale ou pelvienne (par paire)10 nageoire pectorale (par paire). Une nageoire est un membre ou un appendice en général large et plat issu d'un repli cutané, permettant le mouvement et le soutien dans le milieu aquatique.
Aquatic respiration
Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water. In very small animals, plants and bacteria, simple diffusion of gaseous metabolites is sufficient for respiratory function and no special adaptations are found to aid respiration. Passive diffusion or active transport are also sufficient mechanisms for many larger aquatic animals such as many worms, jellyfish, sponges, bryozoans and similar organisms.
Afficher plus