Explore l'hypothèse de thermalisation d'état propre dans les systèmes quantiques, en mettant l'accent sur la théorie de la matrice aléatoire et le comportement des observables dans l'équilibre thermique.
Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.
Explore les vecteurs gaussiens, les fonctions génératrices de moment, l'indépendance, les fonctions de densité, les transformations affines et les formes quadratiques.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris la régression linéaire, les statistiques exploratoires et l'analyse des probabilités.