In probability theory and statistics, a conditional variance is the variance of a random variable given the value(s) of one or more other variables. Particularly in econometrics, the conditional variance is also known as the scedastic function or skedastic function. Conditional variances are important parts of autoregressive conditional heteroskedasticity (ARCH) models. The conditional variance of a random variable Y given another random variable X is The conditional variance tells us how much variance is left if we use to "predict" Y. Here, as usual, stands for the conditional expectation of Y given X, which we may recall, is a random variable itself (a function of X, determined up to probability one). As a result, itself is a random variable (and is a function of X). least-squares Recall that variance is the expected squared deviation between a random variable (say, Y) and its expected value. The expected value can be thought of as a reasonable prediction of the outcomes of the random experiment (in particular, the expected value is the best constant prediction when predictions are assessed by expected squared prediction error). Thus, one interpretation of variance is that it gives the smallest possible expected squared prediction error. If we have the knowledge of another random variable (X) that we can use to predict Y, we can potentially use this knowledge to reduce the expected squared error. As it turns out, the best prediction of Y given X is the conditional expectation. In particular, for any measurable, By selecting , the second, nonnegative term becomes zero, showing the claim. Here, the second equality used the law of total expectation. We also see that the expected conditional variance of Y given X shows up as the irreducible error of predicting Y given only the knowledge of X. When X takes on countable many values with positive probability, i.e., it is a discrete random variable, we can introduce , the conditional variance of Y given that X=x for any x from S as follows: where recall that is the conditional expectation of Z given that X=x, which is well-defined for .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
FIN-474: Advanced risk management topics
The students learn different financial risk measures and their risk theoretical properties. They learn how to design and implement risk engines, with model estimation, forecast, reporting and validati
MATH-342: Time series
A first course in statistical time series analysis and applications.
MATH-233: Probability and statistics
Le cours fournit une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.
Séances de cours associées (32)
Mémoire longue et ARCH: Séries chronologiques Math 342
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Hadamard Design: Introduction et construction
Présente Hadamard et Plackett-Burman conçoit, expliquant les techniques de construction, d'analyse et d'optimisation.
Dépendance et corrélation
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Afficher plus
Publications associées (9)
Concepts associés (2)
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Variance (mathématiques)
vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.