Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Graphic matroidIn the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Graphe distance-transitifEn théorie des graphes, un graphe non-orienté est distance-transitif si pour tous sommets u, v, x, y tels que u et v d'une part et x et y d'autre part sont à même distance, il existe un automorphisme de graphe envoyant u sur x et v sur y. Autrement dit, un graphe est distance-transitif si son groupe d'automorphisme agit transitivement sur chacun des ensembles de paires de sommets à même distance. Tout graphe distance-transitif est distance-régulier.
Graphe de HeawoodEn théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage.
Graphe arête-connexeEn théorie des graphes, un graphe k-arête-connexe est un graphe connexe qu'il est possible de déconnecter en supprimant k arêtes et tel que ce k soit minimal. Il existe donc un ou plusieurs ensembles de k arêtes dont la suppression rende le graphe déconnecté, mais la suppression de k-1 arêtes, quelles qu'elles soient, le fait demeurer connexe. Un graphe régulier de degré k est au plus k-arête-connexe et k-sommet-connexe. S'il est effectivement k-arête-connexe et k-sommet-connexe, il est qualifié de graphe optimalement connecté.
Graphe de MycielskiEn théorie des graphes, les graphes de Mycielski, ou myscielkiens, sont des graphes sans triangles de nombre chromatique élevé, construits par récurrence à partir du graphe formé d'un unique sommet par une transformation appelée elle aussi myscielskien. Ils sont dus au mathématicien Jan Mycielski. Soit un graphe. Le mycielkien de ce graphe noté est le graphe avec où est une copie de et où et . Les graphes de Mycielski sont les graphes définis par la récurrence suivante : est le graphe à une arête, et .
Graphe de GrötzschLe graphe de Grötzsch est, en théorie des graphes, un graphe possédant 11 sommets et 20 arêtes. C'est le plus petit graphe sans triangle de nombre chromatique 4. Il est nommé d'après Herbert Grötzsch qui l'a découvert en 1958. 480px|Construction du graphe de Grötzsch.140px|Le résultat. Le graphe de Grötsch peut être vu comme le graphe de Mycielski construit à partir du graphe cycle à cinq sommets : pour chaque sommet du graphe cycle, on crée un nouveau sommet lié aux deux voisins de ; on crée ensuite un nouveau sommet lié à tous les .