Publications associées (35)

Functional data analysis with rough sample paths?

Victor Panaretos, Neda Mohammadi Jouzdani

Functional data are typically modeled as sample paths of smooth stochastic processes in order to mitigate the fact that they are often observed discretely and noisily, occasionally irregularly and sparsely. The smoothness assumption is imposed to allow for ...
TAYLOR & FRANCIS LTD2023

Normal approximation of the solution to the stochastic heat equation with Levy noise

Carsten Hao Ye Chong

Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law ...
SPRINGER2020

The n-term Approximation of Periodic Generalized Levy Processes

Michaël Unser, Julien René Pierre Fageot, John Paul Ward

In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimati ...
SPRINGER/PLENUM PUBLISHERS2020

Gaussian and sparse processes are limits of generalized Poisson processes

Michaël Unser, Julien René Pierre Fageot, Virginie Sophie Uhlmann

The theory of sparse stochastic processes offers a broad class of statistical models to study signals, far beyond the more classical class of Gaussian processes. In this framework, signals are represented as realizations of random processes that are soluti ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2020

Extremal behaviour of aggregated data with an application to downscaling

Sebastian Engelke, Raphaël Gérard Théodore Michel Marie de Deloÿe et Fourcade de Fondeville

The distribution of spatially aggregated data from a stochastic process may exhibit tail behaviour different from that of its marginal distributions. For a large class of aggregating functionals we introduce the -extremal coefficient, which quantifies this ...
OXFORD UNIV PRESS2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.