Résumé
In linear algebra, an invertible complex square matrix U is unitary if its conjugate transpose U* is also its inverse, that is, if where I is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (†), so the equation above is written For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes. For any unitary matrix U of finite size, the following hold: Given two complex vectors x and y, multiplication by U preserves their inner product; that is, ⟨Ux, Uy⟩ = ⟨x, y⟩. U is normal (). U is diagonalizable; that is, U is unitarily similar to a diagonal matrix, as a consequence of the spectral theorem. Thus, U has a decomposition of the form where V is unitary, and D is diagonal and unitary. Its eigenspaces are orthogonal. U can be written as U = eiH, where e indicates the matrix exponential, i is the imaginary unit, and H is a Hermitian matrix. For any nonnegative integer n, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary group U(n). Any square matrix with unit Euclidean norm is the average of two unitary matrices. If U is a square, complex matrix, then the following conditions are equivalent: is unitary. is unitary. is invertible with . The columns of form an orthonormal basis of with respect to the usual inner product. In other words, . The rows of form an orthonormal basis of with respect to the usual inner product. In other words, . is an isometry with respect to the usual norm. That is, for all , where . is a normal matrix (equivalently, there is an orthonormal basis formed by eigenvectors of ) with eigenvalues lying on the unit circle. One general expression of a unitary matrix is which depends on 4 real parameters (the phase of a, the phase of b, the relative magnitude between a and b, and the angle φ).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.