Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Matrice transposéeEn mathématiques, la matrice transposée (ou la transposée) d'une matrice est la matrice , également notée ou , obtenue en échangeant les lignes et les colonnes de . Plus précisément, si on note pour et pour les coefficients respectivement de et de alors pour tout on a . Par exemple, si alors On suppose ici que K est un anneau commutatif. On note et deux matrices quelconques de et un scalaire. L'application « transposition » est linéaire : La transposée de est . Par conséquent, l'application « transposition » est bijective.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Matrice normaleEn algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si A⋅A* = A*⋅A. Toutes les matrices hermitiennes, ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales. Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de UAU sont alors les valeurs propres de A.
Matrice diagonalisableEn mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples.
Matrice identitéEn mathématiques, plus précisement en algèbre linéaire, une matrice identité ou matrice unité est une matrice carrée diagonale dont la diagonale principale est remplie de , et dont les autres coefficients valent . Elle peut s'écrire : La matrice identité de taille se note : Il est possible de noter les coefficients de la matrice identité d'ordre avec le delta de Kronecker : avec Les matrices identité sont des matrices unitaires et sont donc inversibles et normales.