Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Causalité (physique)En physique, le principe de causalité affirme que si un phénomène (nommé cause) produit un autre phénomène (nommé effet), alors la cause précède l'effet (ordre temporel). Le principe de causalité est une des contraintes réalistes imposées à toute théorie mathématiquement cohérente afin qu'elle soit physiquement admissible. D'après Gilles Cohen-Tannoudji, . À ce jour, il n'a pas été mis en défaut par l’expérience, mais certaines théories envisagent une causalité inversée.
Physique mathématiqueLa physique mathématique est un domaine de recherche commun à la physique et aux mathématiques s'intéressant au développement des méthodes mathématiques spécifiques aux problèmes physiques ou plus généralement à l'application des mathématiques à la physique, et, à l'opposé, aux développements mathématiques que suscitent certains domaines de recherche en physique. Elle inclut notamment l'étude des systèmes dynamiques, des algèbres aux symétries particulières, des méthodes de décomposition en séries et des méthodes de résolution d'équations différentielles.
Développement multipolaireEn Physique, le développement multipolaire correspond au développement en série d'un potentiel scalaire, comme le potentiel électrique ou gravitationnel, utilisant de manière habituelle des puissances (ou des puissances inverses) de la distance à l'origine, ainsi que de la dépendance angulaire, et dont les coefficients sont appelés moments multipolaire. En principe, un développement multipolaire procure une description exacte du potentiel et converge généralement sous deux conditions, si les sources (i.e.
Réflexion (physique)vignette|upright=1|La loi de la réflexion en physique.|alt=Le rayon incident arrive sur la surface et est réfléchi. Les angles d'incidence et de réflexion sont identiques. vignette|Matsimäe Pühajärv, Estonie. La réflexion en physique est le brusque changement de direction d'une onde à l'interface de deux milieux. Après réflexion, l'onde reste dans son milieu de propagation initial. De multiples types d'ondes peuvent subir une réflexion.