Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Finite potential wellThe finite potential well (also known as the finite square well) is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box.
Amplitude de probabilitévignette|Une fonction d'onde pour un seul électron dans l'orbite atomique 5d d'un atome d'hydrogène . La forme montre les endroits où la densité de probabilité de l'électron est supérieure à une certaine valeur, celle-ci est calculée avec l'amplitude de probabilité. La teinte sur la surface colorée montre la phase complexe de la fonction d'onde. En mécanique quantique, une amplitude de probabilité est un nombre complexe utilisé pour décrire le comportement d'un système.
Matter waveMatter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (dəˈbrɔɪ) in 1924, and so matter waves are also known as de Broglie waves.
Particule dans une boîteEn physique, la particule dans une boîte (ou puits de potentiel carré) est une représentation simple d'un système relevant de la mécanique quantique. On étudie une particule confinée dans une région finie de l'espace grâce à des murs de potentiel infini aux bords de cette région. La particule n'est soumise à aucune force à l'intérieur de la boîte, mais y est retenue par une force infinie aux bords. C'est une situation similaire à un gaz confiné dans un contenant. Pour simplifier, le cas unidimensionnel sera premièrement traité.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Principe d'incertitudeEn mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position (x) et sa quantité de mouvement (p).
Équation de DiracL'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron. Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire entre la masse et l'impulsion. Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.
Énergie cinétiqueEn physique, l' est l’énergie que possède un corps du fait de son mouvement dans un référentiel donné. L'énergie cinétique n'est pas un invariant galiléen, c'est-à-dire que sa valeur dépend du référentiel choisi. Son unité est le joule. L'énergie cinétique d'un point matériel dans un référentiel galiléen est égale au travaux des forces appliquées pour faire passer le point du repos à un mouvement. vignette|Les wagons des montagnes russes possèdent une énergie cinétique maximale en bas de leur parcours.