Publications associées (40)

GAP: Differentially Private Graph Neural Networks with Aggregation Perturbation

Daniel Gatica-Perez, Sina Sajadmanesh

In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
Berkeley2023

Efficient Distributed Transposition Of Large-Scale Multigraphs And High-Cardinality Sparse Matrices

Felix Schürmann, Bruno Ricardo Da Cunha Magalhães

Graph-based representations underlie a wide range of scientific problems. Graph connectivity is typically represented as a sparse matrix in the Compressed Sparse Row format. Large-scale graphs rely on distributed storage, allocating distinct subsets of row ...
2020

Buffer Placement and Sizing for High-Performance Dataflow Circuits

Paolo Ienne, Andrea Guerrieri, Lana Josipovic, Shabnam Sheikhha

Commercial high-level synthesis tools typically produce statically scheduled circuits. Yet, effective C-to-circuit conversion of arbitrary software applications calls for dataflow circuits, as they can handle efficiently variable latencies (e.g., caches) a ...
ASSOC COMPUTING MACHINERY2020

Graph-based image representation learning

Renata Khasanova

Though deep learning (DL) algorithms are very powerful for image processing tasks, they generally require a lot of data to reach their full potential. Furthermore, there is no straightforward way to impose various properties, given by the prior knowledge a ...
EPFL2019

Hierarchical Routing Over Dynamic Wireless Networks

Matthias Grossglauser, Suhas Diggavi, Dominique Florian Tschopp

The topology of a mobile wireless network changes over time. Maintaining routes between all nodes requires the continuous transmission of control information, which consumes precious power and bandwidth resources. Many routing protocols have been developed ...
Wiley-Blackwell2015

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.