Negligible setIn mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integral of a measurable function. Negligible sets define several useful concepts that can be applied in various situations, such as truth almost everywhere.
Presque sûrementvignette|alt=Illustration d'un évènement négligeable|Illustration du concept : l'évènement où la fléchette atteint exactement le point central de la cible est de probabilité 0. Autrement dit, l'évènement où la fléchette n'atteint pas le point central de la cible est presque sûr. En théorie des probabilités, un évènement est dit presque sûr s'il a une probabilité de un. En d'autres mots, l'ensemble des cas où l'évènement ne se réalise pas est de probabilité nulle.
Almost everywhereIn measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull.
Conjecture de GoldbachLa conjecture de Goldbach est l'assertion mathématique qui s’énonce comme suit : Formulée en 1742 par Christian Goldbach, c’est l’un des plus vieux problèmes non résolus de la théorie des nombres et des mathématiques. Il partage avec l'hypothèse de Riemann et la conjecture des nombres premiers jumeaux le numéro 8 des problèmes de Hilbert, énoncés par celui-ci en 1900.
NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Théorème des nombres premiersvignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers.
List of mathematical jargonThe language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in lectures, and sometimes in print, as informal shorthand for rigorous arguments or precise ideas. Much of this is common English, but with a specific non-obvious meaning when used in a mathematical sense. Some phrases, like "in general", appear below in more than one section.
Théorie des nombres transcendantsEn mathématiques, la théorie des nombres transcendants est une branche de la théorie des nombres qui étudie les nombres transcendants (nombres qui ne sont pas des solutions d'une équation polynomiale à coefficients entiers). Un nombre complexe α est dit transcendant si pour tout polynôme non nul P à coefficients entiers, P(α) ≠ 0. Il en est alors de même pour tout polynôme non nul à coefficients rationnels. Plus généralement, la théorie traite de l'indépendance algébrique des nombres. Un ensemble de nombres {α1, α2, .