En théorie des nœuds, une branche des mathématiques, le complément d'un nœud est l'espace tridimensionnel qui l'entoure. Plus précisément, dans une 3-variété M, si K est un nœud et N un voisinage tubulaire de K alors le complément X de K est le complémentaire de l'intérieur de N : La variété M considérée est le plus souvent (parfois même implicitement) la 3-sphère et K est supposé non . On définit de même le complément d'un entrelacs. Avec la définition ci-dessus, N est un tore plein, X est une 3-variété (compacte si M l'est), et leur frontière commune est un 2-tore. Le assure que le complément d'un nœud est un invariant de nœuds complet : deux nœuds dont les compléments sont homéomorphes sont transformés l'un de l'autre par un homéomorphisme de S. Si cet homéomorphisme préserve l'orientation, alors il est isotope à l'identité donc les deux nœuds sont équivalents. Le groupe fondamental de ce complément, appelé , est donc aussi un invariant, mais non complet.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.