Résumé
En informatique, l'opération modulo, ou opération mod, est une opération binaire qui associe à deux entiers naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par n (n ≠ 0) est noté a mod n (a % n dans certains langages informatiques). Ainsi 9 mod 4 = 1, car 9 = 2×4 + 1 et 0 ≤ 1 < 4, 9 mod 3 = 0, ... L'opération peut être étendue aux entiers relatifs, voire aux nombres réels, mais alors les langages de programmation peuvent diverger, en particulier a mod n n'est plus forcément positif ou nul. En mathématiques, l'usage du terme modulo est différent même s'il est lié : il ne désigne pas une opération mais intervient pour caractériser une relation de congruence sur les entiers (et plus généralement pour d'autres congruences) ; le mot clef mod associé n'est le plus souvent utilisé que pour noter cette congruence, même si un ouvrage comme Concrete Mathematics l'utilise également pour désigner l'opération binaire. Dans la pratique, x mod y peut être calculé en utilisant d'autres fonctions. Ainsi, en notant : avec la partie entière inférieure et la partie fractionnaire, on a : Par exemple, 9 mod 4 = 9 − ⌊9/4⌋×4 = 9 − 2×4 = 1. Des différences apparaissent suivant les types des variables utilisées, lesquels contiennent le type entier dans les implémentations courantes. Mais la principale différence réside dans l'interprétation de la partie entière du quotient, en fonction du signe du dividende ou celui du diviseur quand ceux-ci peuvent être négatifs : est le plus grand entier inférieur ou égal à x. L'opérateur mod retourne alors un modulo toujours compris entre 0 (inclus) et le diviseur n (exclu) et qui a le même signe que le diviseur n. Exemple : Cette définition vérifie les lois de l'arithmétique modulo, plus : x mod −y = −((−x) mod y). Elle convient pour les calculs cycliques (par exemple calendaires). La valeur modulaire retournée est toujours du signe du diviseur (le diviseur étant positif dans la plupart des calculs cycliques, dont les calculs calendaires).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.