In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space. Let be a normed vector space with norm and let denote its continuous dual space. The dual norm of a continuous linear functional belonging to is the non-negative real number defined by any of the following equivalent formulas: where and denote the supremum and infimum, respectively. The constant map is the origin of the vector space and it always has norm If then the only linear functional on is the constant map and moreover, the sets in the last two rows will both be empty and consequently, their supremums will equal instead of the correct value of Importantly, a linear function is not, in general, guaranteed to achieve its norm on the closed unit ball meaning that there might not exist any vector of norm such that (if such a vector does exist and if then would necessarily have unit norm ). R.C. James proved James's theorem in 1964, which states that a Banach space is reflexive if and only if every bounded linear function achieves its norm on the closed unit ball. It follows, in particular, that every non-reflexive Banach space has some bounded linear functional that does not achieve its norm on the closed unit ball. However, the Bishop–Phelps theorem guarantees that the set of bounded linear functionals that achieve their norm on the unit sphere of a Banach space is a norm-dense subset of the continuous dual space. The map defines a norm on (See Theorems 1 and 2 below.) The dual norm is a special case of the operator norm defined for each (bounded) linear map between normed vector spaces. Since the ground field of ( or ) is complete, is a Banach space. The topology on induced by turns out to be stronger than the weak-* topology on The double dual (or second dual) of is the dual of the normed vector space . There is a natural map . Indeed, for each in define The map is linear, injective, and distance preserving. In particular, if is complete (i.e. a Banach space), then is an isometry onto a closed subspace of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Afficher plus
Concepts associés (9)
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Théorème de James
Le théorème de James est un théorème d'analyse fonctionnelle, dû au mathématicien américain , qui donne une caractérisation géométrique de la réflexivité d'un espace de Banach X. Une généralisation est le critère de compacité de James selon lequel, pour la topologie faible, un fermé non vide A de X est compact si et seulement si, sur A, toute forme linéaire continue sur X atteint sa borne supérieure. L'espace X considéré peut être un R- ou un C-espace de Banach. Son dual topologique est noté X’.
Espace réflexif
En analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.