Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Théorème de JamesLe théorème de James est un théorème d'analyse fonctionnelle, dû au mathématicien américain , qui donne une caractérisation géométrique de la réflexivité d'un espace de Banach X. Une généralisation est le critère de compacité de James selon lequel, pour la topologie faible, un fermé non vide A de X est compact si et seulement si, sur A, toute forme linéaire continue sur X atteint sa borne supérieure. L'espace X considéré peut être un R- ou un C-espace de Banach. Son dual topologique est noté X’.
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Théorème de représentation de Riesz (Fréchet-Riesz)En mathématiques, plus précisément en analyse fonctionnelle, le théorème de représentation de Riesz, en l'honneur du mathématicien Frigyes Riesz, est un théorème qui représente les éléments du dual d'un espace de Hilbert comme produit scalaire par un vecteur de l'espace. Ce théorème est aussi parfois appelé théorème de Fréchet-Riesz (à ne pas confondre avec le théorème de Riesz-Fréchet-Kolmogorov). Il s'apparente singulièrement au théorème de Lax-Milgram qui englobe l'énoncé ci-dessous.
Norme d'opérateurEn mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.